sábado, 24 de marzo de 2012

TEORÍA ENDOSIMBIÓTICA (LYNN MARGULIS)



TEORÍA ENDOSIMBIÓTICA (LYNN MARGULIS)


La Endosimbiosis seriada (Serial Endosymbiosis Theory) o teoría endosimbiótica, describe la aparición de las células eucariotas como consecuencia de la sucesiva incorporación simbiogenética de diferentes bacterias de vida libre (procariotas), tres en el caso de animales y hongos y cuatro en el caso de los vegetales.
La endosimbiósis seriada fue propuesta por Lynn Margulis en diferentes artículos y libros: On origen of mitosing cells (1967), Origins of Eukaryotic Cells (1975) y Symbiosis in Cell Evolution (1981),  llegándose a conocer por el acrónimo inglés SET (Serial Endosymbiosis Theory). En la actualidad se acepta que las eucariotas surgieron como consecuencia de los procesos simbiogenéticos descritos por Margulis, una vez ha quedado demostrado el origen simbiogenético de las mitocondrias y los cloroplastos de los eucariontes.
Lynn Margulis publicó un artículo en The Biological Bulletin que prueba la incorporación simbiótica de una espiroqueta para formar los flagelos y cilios de los eucariontes, único paso sobre el que, al día de hoy, existen discrepancias.
ANTECEDENTES DE LA TEORÍA ENDOSIMBIÓTICA:
En 1883, el biólogo alemán Andreas Schimper propuso que la capacidad fotosintética de las células vegetales podía proceder de cianobacterias aún presentes en la naturaleza y con iguales capacidades.
A principios del siglo XX, en 1909, el ruso Kostantin S. Mereschovky presentó la hipótesis según la cual el origen de los cloroplastos tendría su origen en procesos simbióticos.
Las teorías de Margulis fueron prefiguradas ya en el siglo XIX por el naturalista ruso Konstantin Merezhkovsky (1855-1921). Este científico olvidado, que nació antes de la publicación de El origen de las especies y tenía ya 27 años cuando murió Darwin, fue el primer autor que propuso la extravagante idea de la simbiogénesis, según la cual algunos órganos, e incluso algunos organismos, no surgían en la evolución por el gradual mecanismo de la selección natural, sino mediante asociaciones simbióticas entre una especie animal o vegetal y algún tipo de microbio. Merezhkovsky llegó a postular que el núcleo de la célula eucariota provenía de un antiguo microorganismo, lo que posiblemente es erróneo, al menos dicho así, sin más matices. En cualquier caso, sus ideas no tuvieron la menor repercusión.
Merezhkovsky llegó a proponer que el núcleo de las células eucariotas tuvo su origen en una bacteria de vida libre; lo que hoy se considera erróneo,  pero que lo convierte en uno de los primeros en proponer el origen simbiótico de las células eucariotas. Los trabajos de Merezhkovsky pasaron inadvertidos. Años después, Ivan Wallin (anatomista estadounidense) llegó a la misma conclusión, publicando en 1927 el libro Simbiosis y el origen de las especies. En este caso, sus conclusiones fueron tenidas por absurdas, costándole su prestigio profesional.
En Francia, el biólogo Paul Portier, en 1918, también llegó a conclusiones parecidas sobre el origen simbiótico de las eucariotas. En este caso, Portier sufrió los ataques del entonces influyente microbiólogo August Lumiére.
Estos trabajos, minusvalorados en su tiempo, permanecieron olvidados hasta que Margulis, apoyándose en ellos, poniendo énfasis en las capacidades de las bacterias y la potencialidad de la simbiosis, formulara en 1967 la teoría endosimbiótica.
LA TEORÍA:
La teoría endosimbiótica describe el paso de las células procariotas (bacterias o arqueas, no nucleadas) a las células eucariotas (células nucleadas constituyentes de todos los pluricelulares) mediante incorporaciones simbiogenéticas.
Margulis describe este paso en una serie de tres incorporaciones mediante las cuales, por la unión simbiogenética de bacterias, se originaron las células que conforman a los individuos de los otros cuatro reinos (protistasanimaleshongos y plantas).
Según la estimación más aceptada, hace 2.000 millones de años (aunque una horquilla posible podría descender a la cifra de 1.500 millones de años) la vida la componían multitud de bacterias diferentes, adaptadas a los diferentes medios. Margulis destacó también, la que debió ser una alta capacidad de adaptación de estas bacterias al cambiante e inestable ambiente de la Tierra en aquella época. Hoy se conocen más de veinte metabolismos diferentes usados por las bacterias frente a los dos utilizados por los pluricelulares: el aeróbico, que usa el oxígeno como fuente de energía -único metabolismo utilizado por los animales- y la fotosíntesis -presente en las plantas-. Para Margulis, tal variedad revela las dificultades a las que las bacterias se tuvieron que enfrentar y su capacidad para aportar soluciones a esas dificultades.
Primer postulado: Una bacteria consumidora de azufre, que utilizaba el azufre y el calor como fuente de energía (arquea fermentadora o termoacidófila), se habría fusionado con una bacteria nadadora (espiroqueta) habiendo pasado a formar un nuevo organismo y sumaría sus características iniciales de forma sinérgica (en la que el resultado de la incorporación de dos o más unidades adquiere mayor valor que la suma de sus componentes). El resultado sería el primer eucarionte (unicelular eucariota) y ancestro único de todos los pluricelulares. El núcleoplasma de la células de animales, plantas y hongos sería el resultado de la unión de estas dos bacterias.
A las características iniciales de ambas células se le sumaría una nueva morfología más compleja con una nueva y llamativa resistencia al intercambio genético horizontal. El ADN quedaría confinado en un núcleo interno separado del resto de la célula por una membrana.
Sobre este primer paso, al día de hoy, todavía existen discrepancias. A finales de los años ochenta y principio de los noventa diversos trabajos no admitían las homologías propuestas entre los flagelos de los eucariontes y de las espiroquetas. Margulis defiende que las asociaciones entre espiroquetas y protistas apoyan su teoría, y "la comparación de genes y genomas arqueobaterianos con secuencias de eucariontes han demostrado la relación filogenética de ambos grupos". No obstante, desde su formulación por Margulis, han surgido innumerables interrogantes. Margulis admite que este es el punto de su teoría con más dificultades para defenderse y Antonio Lazcano, en 2002, previene que para comprender el origen de este primer paso, se acepte o no su origen simbiogenético, "es indispensable secuenciar no sólo los genomas de una gama representativa de protistas sino también reconocer la importancia del estudio de la biología de estos organismos".
Ya en los años setenta surgió, como alternativa al origen simbiogenético de este primer paso, la hipótesis de que éste se hubiese producido mediante invaginaciones, propuesta que no contradice el paradigma neodarviniano y que, aún hoy, se considera plausible por amplios sectores del mundo académico.
Recurrentemente se han propuesto diferentes hipótesis, también simbiogéneticas, en las que el propio núcleo sería resultado de la incorporación de otro simbionte, como en el caso de las mitocondrias y los cloroplastos.
Segundo postulado: Este nuevo organismo todavía era anaeróbico, incapaz de metabolizar el oxígeno, ya que este gas suponía un veneno para él, por lo que viviría en medios donde este oxigeno, cada vez más presente, fuese escaso. En este punto, una nueva incorporación dotaría a este primigenio eucarionte de la capacidad para metabolizar oxigeno. Este nuevo endosombionte, originariamente bacteria respiradora de oxigeno de vida libre, se convertiría en las actuales mitocondrias y peroxisomas presentes en las células eucariotas de los pluricelulares, posibilitando su éxito en un medio rico en oxígeno como ha llegado a convertirse el planeta Tierra. Los animales y hongos somos el resultado de esta segunda incorporación.
Tercer postulado: Esta tercera incorporación originó el Reino vegetal, las recientemente adquiridas células respiradoras de oxígeno fagocitarían bacterias fotosintéticas y algunas de ellas, haciéndose resistentes, pasarían a formar parte del organismo, originando a su vez un nuevo organismo capaz de sintetizar la energía procedente del Sol. Estos nuevos pluricelulares, las plantas, con su éxito, contribuyeron y contribuyen al éxito de animales y hongos.
En la actualidad permanecen las bacterias descendientes de aquellas que debieron, por incorporación, originar las células eucariotas; así como aquellos protistas que no participaron en alguna de las sucesivas incorporaciones.
Este vídeo nos muestra de forma resumida y concisa la teoría endosimbiótica. 
ARGUMENTOS A FAVOR Y EN CONTRA:
Argumentos a favor
La evidencia de que las mitocondrias y los plastos surgieron a través del proceso de endosimbiosis son las siguientes:
·         El tamaño de las mitocondrias es similar al tamaño de algunas bacterias.
·         Las mitocondria y los cloroplastos contienen ADN bicatenario circular cerrado covalentemente - al igual que los procariotas- mientras que el núcleo eucariota posee varios cromosomas bicatenarios lineales.
·         Están rodeados por una doble membrana, lo que concuerda con la idea de la fagocitosis: la membrana interna sería la membrana plasmática originaria de la bacteria, mientras que la membrana externa correspondería a aquella porción que la habría englobado en una vesícula.
·         Las mitocondrias y los cloroplastos se dividen por fisión binaria al igual que los procariotas (los eucariotas lo hacen por mitosis). En algunas algas, tales como Euglena, los plastos pueden ser destruidos por ciertos productos químicos o la ausencia prolongada de luz sin que el resto de la célula se vea afectada. En estos casos, los plastos no se regeneran.
·         En mitocondrias y cloroplastos los centros de obtención de energía se sitúan en las membranas, al igual que ocurre en las bacterias. Por otro lado, los tilacoides que encontramos en cloroplastos son similares a unos sistemas elaborados de endomembranas presentes en cianobacterias.
·         En general, la síntesis proteica en mitocondrias y cloroplastos es autónoma.
·         Algunas proteínas codificadas en el núcleo se transportan al orgánulo, y las mitocondrias y cloroplastos tienen genomas pequeños en comparación con los de las bacterias.. Esto es consistente con la idea de una dependencia creciente hacia el anfitrión eucariótico después de la endosimbiosis. La mayoría de los genes en los genomas de los orgánulos se han perdido o se han movido al núcleo. Es por ello que transcurridos tantos años, hospedador y huésped no podrían vivir por separado.
·         En mitocondrias y cloroplastos encontramos ribosomas 70s, característicos de procariotas, mientras que en el resto de la célula eucariota los ribosomas son 80s.
·         El análisis del RNAr 16s de la subunidad pequeña del ribosoma de mitocondrias y plastos revela escasas diferencias evolutivas con algunos procariotas.
·         Una posible endosimbiosis secundaria (es decir, implicando plastos eucariotas) ha sido observado por Okamoto e Inouye (2005). El protista heterótrofo Hatena se comporta como un depredador e ingiere algas verdes, que pierden sus flagelos y citoesqueleto, mientras que el protista, ahora un anfitrión, adquiere nutrición fotosintética, fototaxia y pierde su aparato de alimentación.
Argumentos en contra
·         Las mitocondrias y los plastos contienen intrones, una característica exclusiva del ADN eucariótico. Por tanto debe de haber ocurrido algún tipo de transferencia entre el ADN nuclear y el ADN mitocondrial/cloroplástico.
·         Ni las mitocondrias ni los plastos pueden sobrevivir fuera de la célula. Sin embargo, este hecho se puede justificar por el gran número de años que han transcurrido: los genes y los sistemas que ya no eran necesarios fueron suprimidos; parte del ADN de los orgánulos fue transferido al genoma del anfitrión, permitiendo además que la célula hospedadora regule la actividad mitocondrial.
·         La célula tampoco puede sobrevivir sin sus orgánulos: esto se debe a que a lo largo de la evolución gracias a la mayor energía y carbono orgánico disponible, las células han desarrollado metabolismos que no podrían sustentarse solamente con las formas anteriores de síntesis y asimilación.



En la actualidad se considera probada la interacción simbiogenética de tres de los cuatro simbiontes propuestos por Margulis. Existiendo discrepancias sobre la incorportación de las espiroquetas, día a día va adquiriendo mayor consenso esa primera incorporación propuesta por Margulis.
Actualmente se consideran posibles alternativas a la propuesta por Margulis para explicar ese primer paso. Alternativas más acorde con el paradigma neodarwinista, mediante procesos graduales de transformación de la célula originaria, y alternativas que contemplan, igualmente, el origen simbiogenético.

4 comentarios:

  1. muy interesante que hayas decidido hacerlo sobre esto, la verdad que esta muy bien

    ResponderEliminar
  2. Gran blog que explica conceptos básicos y fundamentales de esta gran ciencia de la vida, además destacar que tiene elementos muy interesantes y esta muy completo

    ResponderEliminar
  3. Gandisimo blog Fer!!!!! Uno de los mejores blog de biologia que he visto, tratas diversos temas y de forma muy bien explicados y muy facil de entender . Es simplemente enorme jejeje Te sigo ;)

    ResponderEliminar
  4. Wow! :D Un blog excelente! :D Todo muy bien explicado. Saludos! :D

    ResponderEliminar